ATMOSPHERIC CHANCE System Persone

T. E. GRAEDEL • PAUL J. CRUTZEN

Atmospheric Change An Earth System Perspective

T. E. GRAEDEL AT&T Bell Laboratories

PAUL J. CRUTZEN Max-Planck-Institut für Chemie

W. H. Freeman and Company New York

CONTENTS

Preface	xi
1. Introduction	1
The Science of Global Change	1
Opening Comments	7
The Interdisciplinary Nature of Earth System Science	9
Spatial Scales in Earth System Science	11
Time Scales in Earth System Science	12
Stability and Instability	14
2. Earth and Its Driving Forces	20
The Surface of the Planet	20
Isotope Geochronology	22
Plate Tectonics and Modern Plate Motions	27
Tectonic Histories	32
Summary	36
3. The Atmospheric Radiation Budget	39
Solar Radiation and Its Absorption	39
Radiation from Earth's Surface	44
Temperature Structure of the Atmosphere	46
Variability of Solar Radiation	51
Comparison of Radiation Budgets of the	
Terrestial Planets	52
4. The Atmospheric Circulation:	
Transporters of Chemical Constituents	55
Atmospheric Heat Transport and Dynamics	55
Stability and Vertical Mixing	62
Regional Circulation Patterns	67
Effects of Atmospheric Motions on	
Atmospheric Chemistry	68
5. Aerosols and Hydrosols	73
Particle Sizes	75
Aerosol Particle Sources	78
Aerosol Particle Transport and Deposition	81
Hydrosol Particle Sources and Deposition	86
Visibility	87
Effects of Aerosols and Hydrosols	91

6. The Water Cycle and Climate	95
Major Water Reservoirs	95
Water Sources, Sinks, and Fluxes	102
Climate: The Sum of the Parts	114
7. Chemical Principles	117
Molecules, Radicals, and Ions	117
Oxidation and Reduction	120
Chemical Equilibria	121
Ion Pairing, Complexation, and Mineralization	123
Chemical Thermodynamics	125
Speed of Reactions	127
Photochemical Reaction Rates	131
Deposition to Surfaces	132
Chemical Species Lifetimes	135
8. The Chemistry of the Atmosphere	139
Atmospheric Species: Diversity and Abundance	139
The Chemistry of the Atmosphere	141
The Gas Phase Photochemistry of the Troposphere	149
The Chemistry of Precipitation	154
The Chemistry of Aerosol Particles	161
Variations on Large Spatial Scales	165
Variations Within and Between Urban Areas	166
Summary	167
9. Aquatic Chemistry	171
Lake and River Chemistry	172
Groundwater Chemistry	175
Chemistry of the Oceans	176
Hydrothermal Chemistry	179
Similarities and Differences in the	
Chemistry of Earth's Waters	180
10. Ancient Earth: Climate Histories	189
Precambrian Climate	191
Paleozoic and Mesozoic Climate	195
Cenozoic Climate	200
Holocene Climate	203
A Synopsis of Climate Histories	209

11. Ancient Earth: Chemical Histories	215
The Formation and Evolution of the Atmosphere	218
CO ₂ from the Mid-Cretaceous Superplume	221
Natural Sources of Atmospheric Compounds	221
Ice Core Chemistry	223
Gas Histories Preserved in Ice	224
Ion Chemical Histories Preserved in Ice	225
Aerosol Histories Preserved in Ice	229
Sediment Histories of Surface Water Chemistry	229
Summary	231
12. Global Change: The Last Few Centuries	233
Anthropogenic Sources of Atmospheric Emissions	235
The Ice Core Record	240
The Sediment Record of Changing Chemistry	247
Summary	249
13. Global Change: the Last Several Decades	251
Introduction to Analytical Chemistry Techniques	252
Global Air Quality Data and Trends	254
Regional Air Quality Data and Trends	263
Urban Air Quality Data and Trends	268
Trends in Precipitation Chemistry	271
Concluding Comments	273
14. Budgets and Cycles	279
Synthetic Environmental Chemistry	279
The Budget Concept	280
Computing Budget Inputs	284
Regional Scale Budgets	287
Global Scale Budgets	290
Budgets Over time: Lead in the Hudson-Raritan Basin	303
Summary: Budgets In and Out of Balance	305
15. Builiding Environmental Chemical Models	309
The Philosophy of Scientific Models	309
Box Models for Freshwater Chemistry	312
Box Models for Atmospheric Chemistry	314
One-Dimensional (1D) Models	318
Two-Dimensional (2D) Models	321
Three-Dimensional (3D) Models	326
Ocean Models	333
Coupling the Ocean and Atmosphere	334
Summary: The Utility of Earth System Models	336

ix

16. Regional Futures	339
Urban Air Quality	340
Ozone and Precipitation Acidity in	
Northeastern North America	344
Sulfur Deposition and Its Effects in Europe	346
An Analytical Framework for Ensemble Assessment	350
Extending the Assessment to Different Regimes	358
Emission Projections	360
Conclusions	367
17. Global Futures	371
Stratospheric Ozone Reductions from Increased CFCs Reductions in the Self-Cleansing Power	372
of the Atmosphere	374
Anthropogenic Enhancement of the Greenhouse Effect	376
Geographical Distribution of the Greenhouse Effect	383
The Negative Radiation Forcing of	
Anthropogenic SO, Emissions	388
Nuclear Winter, Nuclear Autumn	390
Summary	392
18. The Climate of the Far Future	397
Neo-Holocene and Neo-Pleistocene Climate	398
Neo-Tertiary Climate	404
Neo-Mesozoic and Neo-Paleozoic Climate	405
Neo-Archean Climate	405
A Summary of Possible Climate Futures	407
19. On Change and Sustainability	409
Stimuli for Atmospheric Change	409
Known Uncertainties	411
Important and Not-so-important Driving Forces Corrective Countermeasures for	412
Global Environmental Problems?	412
Surprises	412
Biosphere-Atmosphere Coupling	418
The Three Time Scales	421
The Time Seales	141
Glossary	425
Units of Measurement in Environmental Chemistry	437
Earth Data and Physical Constants	439
Answers to Selected Exercises	441
Index	443